

Development of ECR Ion Source VENUS for the RIA Driver Linac

Daniela Leitner

Lawrence Berkeley National Laboratory

Content

- Introduction
- VENUS Project Milestones
- Commissioning Results
- Future Goals

VENUS Team

Steve Abbott
Roger Dwinell
Matthaeus Leitner
Claude Lyneis
Charlie Silver
Clyde Taylor

VENUS Components

Superconducting Structure

Beam Transport

RIA R&D Source

- 1. Superconducting magnet structure forces a completely new ion source design, not an extension of an existing design.
- 2. VENUS serves as test bed to understand the transport of high current heavy ion beams

VENUS, RIA R&D Milestones

Magnet & Cryostat

- 4T, 3T, 2.4 T Achieved World Most Powerful ECR Plasma Confinement Structure (September 2001)
- Successful Cryostat Heat
 Exchanger Redesign
 (May 2002)
- Power Supply Stabilization for the Superconducting Coils (October 2002)
- Since September 2002
 Closed Loop Operation and
 No Quenches

VENUS, RIA R&D Milestones (cont.)

First Plasma 6/6/2002

- First Plasma (June 2002)
- First Analyzed Beam (September 02)
- High Power Coupling at 18 GHz (March 2003)
- First Emittance
 Measurements (April 2003)
- 28 GHz Gyrotron Ordered (April 2003)
- First Metal Ion Beam (August 2003)
- 28 GHz System Design and Construction (December 2003)

Commissioning Results

Promising performance in the first commissioning tests

Ion beam intensity increases almost linearly with power at 18 GHz.

10 kW 28 GHz will be needed to achieve maximum performance

- Operation very reliable and stable
- Fast turn around after venting

	AECR-U 10+14 GHz	SERSE 14 +18 GHz	VENUS 18 GHz
O ⁶⁺	570 eμΑ	540 eµA	1100 eμΑ
O ⁷⁺	300 eμΑ	225 eµA	324 eµA
Ar ¹¹⁺	270 eμΑ	260 eμΑ	290 eμΑ
Ar ¹²⁺	192 eμΑ	200 eμΑ	180 eμΑ

8 pμA Xe²⁰⁺

			VENUS
	10+14 GHz	14 +18 GHz	18 GHz
Xe ²⁰⁺		135eμΑ	164eμΑ
Xe ²⁷⁺	30еµА	78eµA	84еµА
Xe ³⁰⁺	12eµA	38еµА	28еµА

First Heavy Metal Ion Beam 4pµA Bi²⁵⁺

• First Test of the high temperature oven with Bismuth 8/20/03

Ame

	AECR-U 10+14 GHz	VENUS 18 GHz First tests
Bi ²⁵⁺	70eμA	100eμΑ
Bi ³⁰⁺	57eμΑ	75eμA
Bi ³⁴⁺	25eμA	34eμΑ

VENUS Beam Transport

- Space charge dominated beams
- Charge state distribution for each species present at extraction (each contribution must be taken into account correctly)
- Different focusing properties for each M/Q
- Emittance contribution due to the high solenoid field at the extraction

VENUS Low Energy Beam Transport

LEBT-Design 25 mA proton-equivalent current at 30 kV extraction voltage

Argon Emittance Measurements

Essential for

- Understanding the transport properties of high field ECR ion sources
- Developing the simulation tools for the next generation heavy ion beam injectors (RIA, LHC, RIKEN)

28 GHz Coupling into VENUS

- Timeline
 - Modification of the Cryostat (September 2003)
 - Delivery of the Gyrotron (December 2003)
 - Start commissioning at 28
 GHz (Spring 2004)

- High intensity RIA beams are only possible at 28 GHz
- 28 GHz 10 kW Gyrotron system has been ordered (April 2003)

Summary & Future RIA R&D

FY03

- Commissioning at 18 GHz
- Procurement, Design and Construction of 28 GHz Components

Achieved FY03:

- VENUS running closed loop (11month+)
- 180pμA O⁶⁺, 8pμA Xe²⁰⁺
- First High Temperature oven test 4pμA Bi ²⁵⁺
- First emittance measurements

FY04-05

- High power 28 GHz coupling into VENUS
- Commissioning at 28 GHz

- Systematic Tuning
- Emittance measurements and ion beam transport simulation (integrated modeling)
- Optimizing for high intensity heavy ion beams for RIA (first uranium test)

FY05-06

- Systematic Measurements for RIA Driver beams
- Charge Breeder (0⁺,1⁺→ n⁺)

- RIA Driver Front End Development
 - Systematic Driver Beam Development
- RIA Post Accelerator Development